Passer aux informations produits
1 de 8

My Référence

Ancien Baromètre Enregistreur Maxant Météo Station

Ancien Baromètre Enregistreur Maxant Météo Station

Prix habituel €85,00 EUR
Prix habituel Prix soldé €85,00 EUR
Vente Épuisé
Taxes incluses. Frais d'expédition calculés à l'étape de paiement.

Caractéristiques : 

Ancien Barographe
Métal 
Sans clé 

Dimension :

Hauteur :

17,5 cm

Largeur :

13 cm

Longueur :

34.5 cm

Contenu :

Non applicable

Poids :

4059g

État :

En Bon Etat D'Usage, Voir Photos

Code Barre :

0302240001

Infos Internet :

Barographes

Barographe sans son capot de protection.

Barographe fabriqué en URSS.
Le système le plus ancien de baromètre enregistreur fut inventé par l’Anglais Moreland en 1670 mais c'est la capsule de Vidie qui est le « moteur » de la plupart des appareils actuels. Pour obtenir un déplacement et des efforts plus importants on utilise un empilement de capsules, généralement cinq. Les baromètres enregistreurs sont encore appelés barographes. Beaucoup sont présentés comme des objets « de luxe » dans une boîte vitrée aux montants d'acajou ou d'autre bois précieux mais il existe aussi des modèles beaucoup plus rustiques. Dans les barographes plus récents, la capsule est remplacée par un capteur piézorésistif et le tambour par un écran LCD.

Les barographes étaient autrefois utilisés par les pilotes de planeur pour acquérir des insignes de la Fédération aéronautique internationale ou pour battre des records. Par exemple, un gain d'altitude de 1 000 mètres en planeur (pour l'insigne d'argent) était validé à l'aide d'un barographe enregistrant les différentes altitudes au cours du vol. Ces appareils sont encore reconnus par la Fédération aéronautique internationale. Toutefois ils tombent en désuétude et sont maintenant avantageusement remplacés par des lecteurs GPS avec barographe incorporé qui génèrent des fichiers .igc qui sont scellés.


Empilement de capsules.

Barographe électronique Lirafort.
Évolutions récentes
En 1989, Casio a mis sur le marché la première montre-bracelet munie d'une fonction baromètre, inaugurant une série de montres multi-fonctions destinées aux randonneurs (avec altimètre) et aux plongeurs (avec manomètre).

Données scientifiques sur la pression atmosphérique
La pression atmosphérique peut être exprimée en millimètres de mercure (mmHg) ; ou en utilisant l'unité habituelle de pression : le millibar (mb), appelé officiellement « l'hectopascal (hPa) » depuis 1986, de façon à se rappeler plus aisément qu'il vaut 100 pascals.

Lorsque l'on s'élève, la pression diminue ; pas de façon linéaire, mais de moins en moins vite. Elle dépend aussi du profil de température qui règne au-dessus du lieu où on la mesure. Dans les observations météorologiques, on indique généralement trois valeurs : la pression au niveau de la station (appelée « QFE »), mesurée par un baromètre bien étalonné ; la pression réduite au niveau moyen de la mer dans l'atmosphère standard (appelée « QNH »), c'est-à-dire celle qui régnerait théoriquement, au même endroit, à l'altitude zéro de référence (le niveau moyen de la mer n'est pas facile à définir…) ; et enfin la pression réduite au niveau moyen de la mer dans l'atmosphère réelle (appelée « QFF »).

La formule ci-dessous permet de calculer la pression réduite dans l'atmosphère standard. Dans une telle atmosphère imaginaire, il règne toujours une température de 15 °C (= 288,15 K) à l'altitude zéro (si la température est sensiblement différente, la réduction comportera une erreur non négligeable. Voir à ce sujet l'article sur la pression atmosphérique) :

la température diminue de 6,5 °C par km (donc de 0,006 5 °C par mètre) jusqu'à l'altitude de 11 km ;
la pression au niveau zéro vaut 1 013,25 hPa ;
l'accélération due à la pesanteur est partout constante et vaut 9,806 65 m/s2 ;
il n'y a absolument pas d'eau.

avec QFE = pression absolue [hPa], pred = pression réduite au niveau moyen de la mer [hPa] et h = altitude au-dessus du niveau moyen de la mer [m].

Il est toujours utile d'avoir des ordres de grandeur. À basse altitude, si l'on monte de 10 m, la pression baisse d'environ 1,25 hPa.

Un baromètre, quel qu'il soit, donne toujours la pression qui correspond à l’altitude où il se trouve ; mais les baromètres holostériques peuvent comporter une vis de réglage permettant d'afficher la pression corrigée au niveau de la mer. La pression atmosphérique donnée par les stations météo est toujours ramenée au « niveau moyen de la mer », afin d’avoir un point de référence ; mais en cas de besoin, par exemple pour réaliser les essais de performances de moteurs thermiques comme les turbines à combustion, les stations météos peuvent communiquer sur demande la pression vraie du lieu à une date et une heure voulue.

Quant à la pression réduite au niveau moyen de la mer dans l'atmosphère réelle, elle peut se calculer grâce à la formule suivante (car, contrairement à la formule de réduction dans l'atmosphère standard qui est universelle, la formule utilisée pour l'atmosphère réelle varie d'un pays à l'autre) :

QFF = QFE.exp(gz/RT)

QFF = pression réduite au niveau moyen de la mer

QFE = pression de la station en hPa

z2 = altitude de la station en mètres

T = (T2 + T1) / 2 en kelvins

T1 = 288,15 – 0,0016 Z2 température moyenne au niveau de la mer ajustée à l’altitude

T2 = température moyenne de la station sur 12 heures en kelvins ou (Tmax+Tmin)/2

g = accélération locale due à la pesanteur = de 9,77 à 9,83 m/s2

R = 287,052 9 J/kgK = constante massique des gaz parfaits pour l’air sec

R = R* / Ma

R* = constante molaire des gaz parfaits = 8,314 32 J K−1 mol−1

Ma = masse molaire de l'air sec = 28,964 4 g mol−1

En gros, à basse altitude, la pression diminue de 1 hPa quand on monte de 8,3 m ou augmente de 1 hPa quand on descend de 8,3 m (pour une température de 283 K c'est-à-dire 10 °C).

Le baromètre est-il un instrument de prévision du temps ?
À un endroit donné, l'indication fournie par un baromètre varie continuellement sous l'effet des changements de pression liés à divers phénomènes météorologiques et à la marée atmosphérique6. Ce n'est donc pas la valeur de la pression qui est importante mais sa variation.

La première cause de variation est la marée atmosphérique. L'air est un fluide qui agit exactement comme l'eau des océans. L'atmosphère est soumise à l'attraction des astres et la pression atmosphérique en un point subit donc une marée, présentant deux maximums et deux minimums par jour. L'amplitude de celle-ci dépend de la latitude, négligeable aux pôles et de plusieurs hectopascals aux tropiques6.

Cependant, cette dernière n'est notable que quand la situation météorologique est stagnante, comme sous un anticyclone. Elle est le plus souvent masquée par les variations de pression liées aux perturbations atmosphériques. Ainsi, l'approche d'une dépression ou d'un creux barométrique se traduit par une tendance de pression à la baisse sur une période de l'ordre de 3 à 12 heures qui peut être de plusieurs dizaines d'hectopascals. La valeur et la rapidité de la baisse de pression sont des indicateurs valables de l'intensité de la perturbation atmosphérique qui s'approche et du mauvais temps probable. De même, la pression augmente derrière ces systèmes à l'approche d'un anticyclone ou d'une crête barométrique qui dégagera le ciel. À l'approche d'un orage, la pression baisse rapidement sur une faible zone et remonte tout aussi rapidement avec le front de rafales7,8.

En l'absence de prévisions météorologiques modernes, ou en supplément de celles-ci, un observateur avisé peut donc arriver à faire une prévision à court terme d'une certaine valeur en tenant compte de la climatologie locale, des changements de vents, des nuages et de la tendance de pression.

Le rôle du baromètre dans l'histoire de la météorologie
Bien que plusieurs autres instruments de mesure (thermomètre, hygromètre, anémomètre, girouette, pour ne nommer qu'eux) aient eu un rôle à jouer dans la genèse scientifique de la météorologie, il est clair que le baromètre est d'une importance toute spéciale. Le baromètre mesure une propriété mécanique de l'atmosphère, la pression, qui, contrairement au vent, à la température, ou même à l'humidité, échappe généralement à nos sens. Dès son invention, les scientifiques ont soupçonné l'importance de la pression comme paramètre météorologique, mais les progrès menant à une compréhension réelle ont été lents. On a parfois donné à la lecture du baromètre une importance mal placée, fondée sur des observations empiriques d'une exactitude qui de nos jours paraît discutable.

En effet, jusqu'au début du xxe siècle, la mécanique atmosphérique était encore mal comprise. Le courant-jet, par exemple, est demeuré essentiellement insoupçonné jusque dans les années 1940. C'est dans cette période de la première moitié du siècle que des chercheurs tels que Vilhelm Bjerknes et Carl-Gustaf Rossby ont donné à la météorologie à grande échelle le cadre conceptuel qu'on lui connaît aujourd'hui, fondé sur un solide formalisme de physique mathématique. C'est qu'il était difficile, avant la multiplication des liens de communications, de mesurer l'état de l'atmosphère à une échelle comparable à celle des grands systèmes météorologiques. Les scientifiques du xixe siècle en étaient donc le plus souvent réduits à tenter de relier empiriquement les fluctuations locales de pression avec le caractère du temps et du vent.

Ainsi, en 1883, Privat-Deschanel et Focillon donnent les indications suivantes :

à Paris, le baromètre est généralement au plus haut quand le vent souffle du N-NE et au plus bas s'il souffle du S, les directions se modifiant quelque peu selon les saisons. Les variations de pression atmosphérique ne sont pas liées directement au froid et à la pluie mais comme celui-là est plutôt lié au vent du N et celle-ci au vent du S ou SO, l'observation du baromètre permet de les prévoir avec une fiabilité relativement bonne.
à Pétersbourg (ex Petrograd, puis Leningrad, puis St-Pétersbourg), il pleut indifféremment par tous les vents, les indications du baromètre sont sans valeur.
les grandes tempêtes sont précédées d'abaissements de pression d'autant plus grands que l'on est plus loin de l'équateur. Lors de l'ouragan qui dévasta une partie de l'Europe, en février 1783, le baromètre avait baissé brusquement de 0,031 m (hauteurs de mercure) en Angleterre, de 0,018 à 0,030 m en France et en Allemagne, de 0,007 m seulement à Rome.
dans les régions intertropicales, un écart de 0,001 à 0,002 m suffit pour présager un violent ouragan.
et, remarquent-ils avec bon sens :

Les cultivateurs qui ont le plus d'intérêt à prévoir les changements de temps acquièrent souvent une grande intelligence des signes météorologiques, et le baromètre les trompe beaucoup moins souvent que les habitants des villes.
Ces remarques contiennent quelques éléments de vérité, mais ne sont pas appuyées par une compréhension suffisante des mécanismes sous-jacents. Par exemple, il est correct de dire que les grandes tempêtes sont précédées d'une baisse de pression mais la relation avec l'équateur n'est qu'une observation, incomprise, et finalement incorrecte à la lumière des connaissances actuelles.

De nos jours, le baromètre conserve une importance fondamentale parmi une batterie grandissante d'instruments. Les mesures de pression, de vitesse du vent, de température et d'humidité prises à la surface et en altitude sont communiquées partout dans le monde. Ces mesures prises in-situ ont bien sûr une grande valeur intrinsèque pour l'observation météo mais cette valeur est multipliée lorsqu'on considère qu'elles servent aussi à l'étalonnage et à la validation d'instruments de mesure à distance qui opèrent à partir de satellites, d'avions ou de la surface terrestre. Le baromètre joue ainsi un rôle fondamental dans l'explosion en cours du volume des données d'observation de la Terre par mesure à distance.

Comment mesurer la hauteur d'un bâtiment avec un baromètre
Une histoire célèbre raconte différentes manières de mesurer la hauteur d'un bâtiment avec un baromètre : en s'en servant comme masse pour un fil à plomb ou comme un pendule dont on mesurerait la fréquence propre, comme masse pour mesurer le temps de chute, comme marchandise pour soudoyer le gardien du bâtiment, etc. La « réponse attendue », mesure de la différence de pression entre le bas et le haut, n'étant citée qu'en dernier.

Cette histoire aurait en fait été publiée dans le Reader's Digest en 1958 et elle se serait transformée au fil du temps en une anecdote supposée réelle et attribuée à Niels Bohr, devenant ainsi une légende urbaine9. On peut se demander si le recours à cette personne célèbre n'est pas une manière de transformer une anecdote amusante en un pamphlet contre la « rigidité de l'enseignement scolaire » opposée à la « créativité »

Afficher tous les détails